ADJACENCY-BLURRING-EFFECT OF SCENES MODELED BY THE RADIOSITY METHOD

by

C.C. Borel and S.A.W. Gerstl

Space Science & Technology, SST-8, MS D438 Los Alamos National Laboratory Los Alamos, New Mexico 87545, USA

Content

- 1. Definitions and Properties
- 2. Computing the Point Spread Function for Lambertian Surfaces
- 3. PSF Calculation Using the Extended Radiosity Method
- 4. Measured Radiance at the Sensor for Lambertian Surfaces
- 5. PSF for Non-Lambertian Surfaces
- 6. Simulation of Scenes with Heterogeneous Surface Cover
- 7. Example of a Surface with Bare Soil, Vegetation and Water
- 8. Conclusions

Adjacency-blurring-effect over a discontinuity of reflectances

Adjacency-Blurring-Effect

Effects on sensor performance:

- Borders between bright and dark surfaces blurred
- Errors in the detection and classification of small bright targets surrounded by a dark region or dark targets on a bright background
- Reduction of contrast

How can we model the adjacency-blurring effect?

- Point Spread Function (PSF)
- (Blurred scene) = (unblurred scene) ⊗ PSF

Methods to calculate PSF's:

- Radiative transfer calculations
- Monte Carlo simulations

Properties of PSF's:

- Rotationally symmetric for nadir views if surface Lambertian
- Mirror symmetric for oblique views if surface Lambertian
- Asymmetric for any view direction if surface in non-Lambertian

Computing the Point Spread Function for Lambertian Surfaces

Definition:

The point spread function:

$$PSF(x, y, z; x_0, y_0, z_0; \theta_s, \phi_s; \theta_r, \phi_r)$$

can be defined as the scattering contribution of a surface element $dA = dx \ dy$ illuminated from direction (θ_s, ϕ_s) located at $(x, y, z = z_0)$ into the line-of-sight direction of the observer (θ_r, ϕ_r) looking at point (x_0, y_0, z_0) .

Atmospheric Point Spread Function

Surface

Geometry for computing the point spread function.

PSF Calculation Using the Extended Radiosity Method

$$PSF(x,y,...) = \frac{\kappa_s \Delta l}{4 \pi} \sum_{k=1}^{K} \frac{\tau(r_k) \cos \theta_{r,k} f(\theta_{p,k}) dA}{\pi r_k^2} \cdot \exp(-\kappa_t (K - k) \Delta l),$$

where

- κ_s is the scattering coefficient in $[m^{-1}]$,
- $\Delta l = L_z/(K\cos\theta_r)$,
- ullet L_z is the height of the scattering atmosphere,
- *K* is the number of layers in the atmosphere,
- $\tau(r_k) = \exp(-\kappa_t r_k)$,
- ullet κ_t is the total scattering coefficient in $[m^{-1}]$,
- \bullet r_k is the distance between surface point \vec{P} and a point $\vec{P_k}$ on the line-of-sight in the k-th layer,
- ullet $heta_{r,k}$ the view zenith angle to dA,
- ullet $f(heta_{p,k})$ is the scattering phase function of the k-th layer and
- \bullet $\theta_{p,k}$ is the scattering phase angle.

<u>Note</u>: This method takes height dependent scattering and absorption coefficients and even height dependent scattering phase functions into account.

PSF for Lambertian surface and nadir view ($heta_r=0,\ \kappa_a=$ 0.3, $\kappa_t=$ 0.8)

PSF for Lambertian surface and oblique view ($heta_r=30^0,\ \kappa_a=0.3,\ \kappa_t=0.8$)

PSF for Lambertian surface and oblique view ($heta_r=70^0,~\kappa_a=0.3,~\kappa_t=0.8$)

Measured Radiance at the Sensor for Lambertian Surfaces

$$I_{measured}(x, y, \ldots) = \frac{E_0}{\pi} \tau_s \left[\tau_r \rho(x_0, y_0) + \rho(x, y) \otimes PSF(x, y, \ldots) \right] + I_{path}$$

where

- ullet E_0 is the direct energy incident from the sun in $[W\ m^{-2}]$,
- $\tau_S = \exp(-\kappa_t L_z/\cos\theta_S)$,
- $\tau_r = \exp(-\kappa_t L_z/\cos\theta_r)$,
- $\rho(x,y)$ is the reflectance at point (x,y),
- ullet \otimes denotes the convolution and
- $\bullet \ I_{path}$ is the path radiance or radiance due to scattering in the atmosphere.

"Real" Atmospheric Point Spread Function

The Point Spread Function for Non-Lambertian Surfaces

Assumptions:

1. Whole surface has the same BRDF or :

$$f(x, y; \theta_S, \phi_S; \theta_T, \phi_T) = f(\theta_S, \phi_S; \theta_T, \phi_T).$$

2. Contributions from indirect skylight are negligible on the radiance in direction $(\theta_{r,k},\phi_{r,k})$ or that the upwelling radiance I_{ground} at the ground level is proportional to $f(\theta_s,\phi_s;\theta_r,\phi_r)$.

PSF for non-Lambertian surfaces:

$$PSF(x,y,...) = \frac{\kappa_s \Delta l}{4 \pi} \sum_{k=1}^{K} \frac{\tau(r_k) f(\theta_s, \phi_s; \theta_{r,k}, \phi_{r,k}) \cos \theta_{r,k} f(\theta_{p,k}) dA}{r_k^2} \cdot \exp(-\kappa_t (K - k) \Delta l),$$

where $\phi_{r,k}$ is the view azimuth angle of surface dA from point $\vec{P_k}$.

Simulation of Scenes with Heterogeneous Surface Cover

Algorithm:

- 1. For each surface BRDF $f_i(\theta_s, \phi_s; \theta_r, \phi_r)$, $i=1,2,\ldots,N$ compute the point spread function $PSF_i(x,y,\ldots)$.
- 2. Generate a binary image $Q_i(x,y)$ for each surface type i, where $Q_i(x,y)=1$ if the point (x,y) has surface cover type i and 0 otherwise.
- 3. Convolve each image $Q_i(x,y)$ with its point spread function $PSF_i(x,y,\ldots)$.

The measured radiance image is then given by :

$$I_{measured}(x,y) = \frac{E_0}{\pi} \tau_s \sum_{i=1}^{N} \left[\tau_r Q_i(x_0, y_0) f_i(\theta_s, \phi_s; \theta_r, \phi_r) + Q_i(x, y) \otimes PSF_i(x, y, \dots) \right] + I_{path}.$$

Interpretation:

The adjacency blurring effect is the superposition of ground cover type images convolved with their corresponding point spread functions.

Example of a Surface with Bare Soil, Vegetation and Water

Atmosphere Model:

A "hazy" atmosphere using the Henyey-Greenstein phase function:

$$f(\theta_p) = \frac{1 - \Theta^2}{(1 + \Theta^2 - 2\Theta \cos \theta_p)^{3/2}},$$

where $\Theta=0.75$ is the asymmetry factor, $\kappa_t=0.8,\ \kappa_a=0.05$ for an aerosol laden atmosphere of 1000 m height with 20 layers and a surface of 3000 m by 3000 m horizontal extent with 30 by 30 pixels.

Polar Plot of Henyey-Greenstein Phase Function

Bare Soil BRDF Model (Hapke (1981)):

$$f(\theta_S, \phi_S; \theta_T, \phi_T) = \frac{\omega}{4\pi} \frac{1}{\mu_S + \mu_T} [\{1 + B(g)\}P(g) + H(\mu_S)H(\mu_T) - 1],$$

where ω is the average single scattering albedo, $\mu_S = \cos\theta_S$, $\mu_T = \cos\theta_T$, $\cos g = \mu_S \mu_T + \sin\theta_S \sin\theta_T \cos(\phi_T - \phi_S)$, $B(g) = B_0/[1 + h^{-1}\tan(g/2)]$, $B_0 = S(0)/(\omega P(0))$, $P(g) = 1 + b\cos g + c[(3\cos^2 g - 1)/2]$ and $H(x) = (1 + 2x)/(1 + 2[1 - \omega]^{1/2} x)$. The BRDF parameters chosen were : $\omega = 0.57$, S(0) = 0.48, h = 0.21, b = 0.86 and c = 0.7.

BRDF Slice in the Principal Plane

Vegetation BRDF model (Pinty et al (1990)) :

$$f(\theta_S, \phi_S; \theta_T, \phi_T) = \frac{\omega}{4\pi} \frac{\nu_S}{\nu_S \mu_S + \nu_T \mu_T} \Big[P_V(g) \ P(g) + H\Big(\frac{\mu_S}{\nu_S}\Big) H\Big(\frac{\mu_T}{\nu_T}\Big) - 1 \Big],$$

where ν_s and ν_r describe the leaf orientation distribution for the illumination and observation angles which depend on a parameter χ_l with range: $(-0.4 < \chi_l < 0.6)$, P(g) is the leaf scattering phase function which is the Henyey-Greenstein function, the function $P_v(g)$ depends on the variable $G = [\tan^2\theta_s + \tan^2\theta_r - 2\tan\theta_s\tan\theta_r\cos(\phi_s - \phi_r)]^{1/2}$, the radius of sun flecks r in [m] and Λ the leaf area density in $[m^2m^{-3}]$. We selected the following canopy parameters : $\omega = 0.8$, $\Theta = -0.4$, $\Lambda = 0.01$, r = 1., $\chi_l = 0.2$.

BRDF Slice in the Principal Plane

Water surface BRDF model:

$$f(\theta_S, \phi_S; \theta_T, \phi_T) = \rho_{water} P(g)$$

with the forward peak aligned with the specular reflectance direction $(\theta_s,\phi_s+\pi)$ or $g=\cos^{-1}[\mu_s\mu_r+\sin\theta_s\sin\theta_r\cos(\phi_s-\phi_r-\pi)]$. We selected a reflectance ρ_{water} of 2.55 % and an asymmetry factor of $\Theta=0.95$.

BRDF Slice in the Principal Plane

Point spread functions of (a) bare soil, (b) vegetation and (c) water with the z-axis in logarithmic scale and the y-axis points into the paper.

Simulated Scene

Simulated scene from (a) above and (b) viewed through atmosphere from the below at 60^{0} view zenith angle and illuminated from above at 30^{0} sun zenith angle.

Conclusions

- The extended radiosity method has been used to compute point spread functions for a layered atmosphere above a heterogeneous ground cover.
- The PSF's were found to be asymmetric for non-Lambertian surfaces
- The adjacency blurring effect was simulated for a scene containing vegetated, bare soil and water surfaces.